Teacher notes Topic A

Average power

In many problems we will be asked to find the average power developed by a force. This can be done simply by calculating the amount ΔE by which the total energy of the system changed and dividing by

the time Δt taken: $\overline{P} = \frac{\Delta E}{\Delta t}$.

An alternative is to use the fact that at any instant the power developed by a force *F* is P = Fv where *v* is the instantaneous speed. To find the average power we need to find the average of the product Fv. It is shown below that this is given by

$$\overline{P} = \overline{F} \times \frac{u+v}{2}$$

where *u* is the initial speed and \overline{F} is the average **net** force. (Notice that $\frac{u+v}{2}$ is NOT the average speed; it is the average speed only when the acceleration is constant. This means that, in general, you **cannot** write $\overline{P} = \overline{F} \times \overline{v}$.)

$$\overline{P} = \frac{1}{T} \int_{0}^{T} Fv dt$$

$$= \frac{1}{T} \int_{0}^{T} m \frac{dv}{dt} v dt = \frac{1}{T} \int_{0}^{T} mv dv$$

$$= \frac{1}{T} \left(\frac{1}{2} mv^{2} - \frac{1}{2} mu^{2} \right) = \frac{1}{2T} m(v - u)(v + u)$$

$$= (m \frac{\Delta v}{T}) \times (\frac{u + v}{2})$$

$$= \overline{F} \frac{u + v}{2}$$

It is stressed that $\overline{P} = \overline{F} \times \frac{u+v}{2}$ gives the average power developed by the **net** force not just any force.

Now imagine a rope raising a mass m vertically upwards. What is the average power developed by the tension T in the rope? Assume that the tension is constant.

$$F_{\rm net} = T - mg \Longrightarrow T = F_{\rm net} + mg$$

The average power developed by the tension is then

$$\overline{P} = \overline{F}_{net} \times \frac{u+v}{2} + \frac{mgs}{t}$$

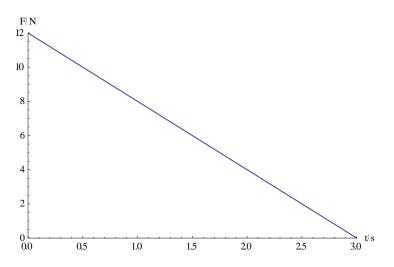
$$= \overline{F}_{net} \times \frac{u+v}{2} + mg \times \frac{\frac{u+v}{2}t}{t} \qquad (\text{acceleration is constant so } s = \frac{u+v}{2}t)$$

$$= (F_{net} + mg) \times \frac{u+v}{2} \qquad (\text{we do not need the average since the net force is constant})$$

$$= T \times \frac{u+v}{2}$$

This means that when the acceleration is constant, we can still use $\overline{P} = F \times \frac{u+v}{2}$ for the average power of any constant force *F*.

As an example, consider the average power developed by a force acting on a body of mass 2.0 kg that is initially at rest. The force that varies with time as shown:



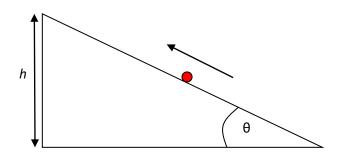
Method 1: The impulse is $\frac{12 \times 3.0}{2} = 18 \text{ N s}$ and so the final speed is $v = \frac{18}{2.0} = 9.0 \text{ m s}^{-1}$ The change in total energy is the change in kinetic energy $\Delta E = \frac{1}{2} \times 2.0 \times 9.0^2 = 81 \text{ J}$ and dividing by the time to get

$$\overline{P} = \frac{81}{3.0} = 27 \text{ W}$$

Method 2: The impulse is $\frac{12 \times 3.0}{2} = 18 \text{ N} \text{ s}$ and so the average force is $\overline{F} = \frac{18}{3} = 6.0 \text{ N}$. The final speed is $v = \frac{18}{2.0} = 9.0 \text{ m} \text{ s}^{-1}$ and so $\overline{P} = 6.0 \times \frac{0+9.0}{2} = 27 \text{ W}$.

IB Physics: K.A. Tsokos

Consider now a constant force *F* that moves a body of mass m = 4.0 kg up an inclined plane that makes an angle $\theta = 30^{\circ}$ to the horizontal raising the mass a vertical height h = 8.0 m. The body moves at constant speed v = 4.0 m s⁻¹. What is the average power developed by *F*?



Method 1: The change in potential energy is $mgh = 4.0 \times 10 \times 8.0 = 320$ J and this change occurs in a time of (the distance travelled along the plane is 16 m) $t = \frac{16}{4.0} = 4.0$ s. There is no change in kinetic energy.

So
$$\overline{P} = \frac{\Delta E}{\Delta t} = \frac{320}{4.0} = 80 \text{ W}$$
.

Method 2: The net force is zero so $F - mg\sin\theta = 0 \Rightarrow F = mg\sin\theta = 4.0 \times 10 \times \frac{1}{2} = 20 \text{ N}$. There is no acceleration so $\overline{P} = F \times \frac{u+v}{2} = 20 \times \frac{4.0+4.0}{2} = 80 \text{ W}$.

Suppose now that the force *F* in the previous example is a constant force of 28 N.

What is the average power developed by F?

We can do this in two ways. For both methods we will need:

The net force is $F - mg\sin\theta = 28 - 20 = 8.0$ N up the plane and so the acceleration is 2.0 m s⁻². Then (the distance travelled along the plane is 16 m) $v^2 = 2as = 2 \times 2.0 \times 16 = 64 \implies v = 8.0$ m s⁻¹.

Method 1: At the top of the incline the mass gained potential energy $mgh = 4.0 \times 10 \times 8.0 = 320$ J. The change in kinetic energy is $\frac{1}{2}mv^2 = \frac{1}{2} \times 4.0 \times 8.0^2 = 128$ J. The change in total energy is then

320+128 = 448 J. The time to get to the top is given by $v = at \Rightarrow t = \frac{8.0}{2.0} = 4.0$ s. Hence,

$$\overline{P} = \frac{\Delta E}{\Delta t} = \frac{448}{4.0} = 112 \text{ W}.$$

Method 2: The acceleration is constant so we may use $\overline{P} = F \frac{u+v}{2} = 28 \times \frac{0+8.0}{2} = 112 \text{ W}.$

Class example: A constant net force of 6.0 N accelerates a body from a speed of 2.0 m s⁻¹ to a speed of 12 m s⁻¹. What is the average power developed?

We use
$$\overline{P} = F \times \frac{u+v}{2} = 6.0 \times \frac{2.0+12}{2} = 42 \text{ W}.$$

How would you use $\overline{P} = \frac{\Delta E}{T}$ here since you don't know the mass?

$$(\Delta E = \frac{1}{2}m \times (12^2 - 2.0^2) = 70m.$$

$$12 = 2.0 + aT = 2.0 + \frac{F}{m}T = 2.0 + \frac{6.0}{m}T$$
, i.e. $10 = \frac{6.0}{m}T$, so $\frac{m}{T} = 0.60$

Hence,
$$\overline{P} = \frac{\Delta E}{T} = \frac{70m}{T} = 70 \times 0.60 = 42 \text{ W}$$
.)

Summary

For constant acceleration we can use $\overline{P} = F \times \frac{u+v}{2}$ for **any constant** force *F*.

For non-constant acceleration we can use $\overline{P} = \overline{F} \times \frac{u+v}{2}$ for a **net** force *F*.