Teacher notes

Topic A

Average power

In many problems we will be asked to find the average power developed by a force. This can be done simply by calculating the amount ΔE by which the total energy of the system changed and dividing by the time Δt taken: $\bar{P}=\frac{\Delta E}{\Delta t}$.

An alternative is to use the fact that at any instant the power developed by a force F is $P=F v$ where v is the instantaneous speed. To find the average power we need to find the average of the product $F v$. It is shown below that this is given by
$\bar{P}=\bar{F} \times \frac{u+v}{2}$
where u is the initial speed and \bar{F} is the average net force. (Notice that $\frac{u+v}{2}$ is NOT the average speed; it is the average speed only when the acceleration is constant. This means that, in general, you cannot write $\bar{P}=\bar{F} \times \bar{V}$.)

$$
\begin{aligned}
\bar{P} & =\frac{1}{T} \int_{0}^{T} F v d t \\
& =\frac{1}{T} \int_{0}^{T} m \frac{d v}{d t} v d t=\frac{1}{T} \int_{0}^{T} m v d v \\
& =\frac{1}{T}\left(\frac{1}{2} m v^{2}-\frac{1}{2} m u^{2}\right)=\frac{1}{2 T} m(v-u)(v+u) \\
& =\left(m \frac{\Delta v}{T}\right) \times\left(\frac{u+v}{2}\right) \\
& =\bar{F} \frac{u+v}{2}
\end{aligned}
$$

It is stressed that $\bar{P}=\bar{F} \times \frac{u+v}{2}$ gives the average power developed by the net force not just any force.

Now imagine a rope raising a mass m vertically upwards. What is the average power developed by the tension T in the rope? Assume that the tension is constant.

$$
F_{\mathrm{net}}=T-m g \Rightarrow T=F_{\mathrm{net}}+m g
$$

The average power developed by the tension is then

IB Physics: K.A. Tsokos

$$
\begin{aligned}
\bar{P} & =\bar{F}_{\text {net }} \times \frac{u+v}{2}+\frac{m g s}{t} \\
& \left.=\bar{F}_{\text {net }} \times \frac{u+v}{2}+m g \times \frac{\frac{u+v}{2} t}{t} \quad \text { (acceleration is constant so } s=\frac{u+v}{2} t\right) \\
& =\left(F_{\text {net }}+m g\right) \times \frac{u+v}{2} \quad \text { (we do not need the average since the net force is constant) } \\
& =T \times \frac{u+v}{2}
\end{aligned}
$$

This means that when the acceleration is constant, we can still use $\bar{P}=F \times \frac{u+v}{2}$ for the average power of any constant force F.

As an example, consider the average power developed by a force acting on a body of mass 2.0 kg that is initially at rest. The force that varies with time as shown:

Method 1: The impulse is $\frac{12 \times 3.0}{2}=18 \mathrm{Ns}$ and so the final speed is $v=\frac{18}{2.0}=9.0 \mathrm{~m} \mathrm{~s}^{-1}$ The change in total energy is the change in kinetic energy $\Delta E=\frac{1}{2} \times 2.0 \times 9.0^{2}=81 \mathrm{~J}$ and dividing by the time to get $\bar{P}=\frac{81}{3.0}=27 \mathrm{~W}$.

Method 2: The impulse is $\frac{12 \times 3.0}{2}=18 \mathrm{Ns}$ and so the average force is $\bar{F}=\frac{18}{3}=6.0 \mathrm{~N}$. The final speed is $v=\frac{18}{2.0}=9.0 \mathrm{~m} \mathrm{~s}^{-1}$ and so $\bar{P}=6.0 \times \frac{0+9.0}{2}=27 \mathrm{~W}$.

IB Physics: K.A. Tsokos

Consider now a constant force F that moves a body of mass $m=4.0 \mathrm{~kg}$ up an inclined plane that makes an angle $\theta=30^{\circ}$ to the horizontal raising the mass a vertical height $h=8.0 \mathrm{~m}$. The body moves at constant speed $v=4.0 \mathrm{~m} \mathrm{~s}^{-1}$. What is the average power developed by F ?

Method 1: The change in potential energy is $m g h=4.0 \times 10 \times 8.0=320 \mathrm{~J}$ and this change occurs in a time of (the distance travelled along the plane is 16 m) $t=\frac{16}{4.0}=4.0 \mathrm{~s}$. There is no change in kinetic energy. So $\bar{P}=\frac{\Delta E}{\Delta t}=\frac{320}{4.0}=80 \mathrm{~W}$.

Method 2: The net force is zero so $F-m g \sin \theta=0 \Rightarrow F=m g \sin \theta=4.0 \times 10 \times \frac{1}{2}=20 \mathrm{~N}$. There is no acceleration so $\bar{P}=F \times \frac{u+v}{2}=20 \times \frac{4.0+4.0}{2}=80 \mathrm{~W}$.

Suppose now that the force F in the previous example is a constant force of 28 N .
What is the average power developed by F ?

We can do this in two ways. For both methods we will need:

The net force is $F-m g \sin \theta=28-20=8.0 \mathrm{~N}$ up the plane and so the acceleration is $2.0 \mathrm{~m} \mathrm{~s}^{-2}$. Then (the distance travelled along the plane is 16 m$) v^{2}=2 a s=2 \times 2.0 \times 16=64 \Rightarrow v=8.0 \mathrm{~m} \mathrm{~s}^{-1}$.

Method 1: At the top of the incline the mass gained potential energy $m g h=4.0 \times 10 \times 8.0=320 \mathrm{~J}$. The change in kinetic energy is $\frac{1}{2} m v^{2}=\frac{1}{2} \times 4.0 \times 8.0^{2}=128 \mathrm{~J}$. The change in total energy is then

IB Physics: K.A. Tsokos

$320+128=448 \mathrm{~J}$. The time to get to the top is given by $v=a t \Rightarrow t=\frac{8.0}{2.0}=4.0 \mathrm{~s}$. Hence, $\bar{P}=\frac{\Delta E}{\Delta t}=\frac{448}{4.0}=112 \mathrm{~W}$.

Method 2: The acceleration is constant so we may use $\bar{P}=F \frac{u+v}{2}=28 \times \frac{0+8.0}{2}=112 \mathrm{~W}$.

Class example: A constant net force of 6.0 N accelerates a body from a speed of $2.0 \mathrm{~m} \mathrm{~s}^{-1}$ to a speed of $12 \mathrm{~m} \mathrm{~s}^{-1}$. What is the average power developed?

We use $\bar{P}=F \times \frac{u+v}{2}=6.0 \times \frac{2.0+12}{2}=42 \mathrm{~W}$.

How would you use $\bar{P}=\frac{\Delta E}{T}$ here since you don't know the mass?
$\left(\Delta E=\frac{1}{2} m \times\left(12^{2}-2.0^{2}\right)=70 m\right.$.
$12=2.0+a T=2.0+\frac{F}{m} T=2.0+\frac{6.0}{m} T$, i.e. $10=\frac{6.0}{m} T$, so $\frac{m}{T}=0.60$.

Hence, $\left.\bar{P}=\frac{\Delta E}{T}=\frac{70 m}{T}=70 \times 0.60=42 \mathrm{~W}.\right)$

Summary

For constant acceleration we can use $\bar{P}=F \times \frac{u+v}{2}$ for any constant force F.

For non-constant acceleration we can use $\bar{P}=\bar{F} \times \frac{u+v}{2}$ for a net force F.

